Attention Based CLDNNs for Short-Duration Acoustic Scene Classification

نویسندگان

  • Jinxi Guo
  • Ning Xu
  • Li-Jia Li
  • Abeer Alwan
چکیده

Recently, neural networks with deep architecture have been widely applied to acoustic scene classification. Both Convolutional Neural Networks (CNNs) and Long Short-Term Memory Networks (LSTMs) have shown improvements over fully connected Deep Neural Networks (DNNs). Motivated by the fact that CNNs, LSTMs and DNNs are complimentary in their modeling capability, we apply the CLDNNs (Convolutional, Long Short-Term Memory, Deep Neural Networks) framework to short-duration acoustic scene classification in a unified architecture. The CLDNNs take advantage of frequency modeling with CNNs, temporal modeling with LSTM, and discriminative training with DNNs. Based on the CLDNN architecture, several novel attention-based mechanisms are proposed and applied on the LSTM layer to predict the importance of each time step. We evaluate the proposed method on the truncated version of the 2016 TUT acoustic scenes dataset which consists of recordings from 15 different scenes. By using CLDNNs with bidirectional LSTM, we achieve higher performance compared to the conventional neural network architectures. Moreover, by combining the attention-weighted output with LSTM final time step output, significant improvement can be further achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Sequential Image Features for Acoustic Scene Classification

For the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE2017), we propose a novel method to classify 15 different acoustic scenes using deep sequential learning, based on features extracted from Short-Time Fourier Transform and scalogram of the audio scenes using Convolutional Neural Networks. It is the first time...

متن کامل

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques

ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...

متن کامل

Empirical Evaluation of Parallel Training Algorithms on Acoustic Modeling

Deep learning models (DLMs) are state-of-the-art techniques in speech recognition. However, training good DLMs can be time consuming especially for production-size models and corpora. Although several parallel training algorithms have been proposed to improve training efficiency, there is no clear guidance on which one to choose for the task in hand due to lack of systematic and fair comparison...

متن کامل

Hierarchical learning for DNN-based acoustic scene classification

In this paper, we present a deep neural network (DNN)-based acoustic scene classification framework. Two hierarchical learning methods are proposed to improve the DNN baseline performance by incorporating the hierarchical taxonomy information of environmental sounds. Firstly, the parameters of the DNN are initialized by the proposed hierarchical pre-training. Multi-level objective function is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017